Obtenez tout ce dont vous avez besoin pour la cellule de batterie LG Chem INR18650-M29: des données de mesure étendues dans la zone opérationnelle totale, un modèle physique de batterie de haute précision avec une validité globale, ainsi qu'un rapport de démontage contenant tous les détails sur les matériaux et les microstructures.
Cell Origin | purchased on free market |
Cell Format | 18650 |
Dimensions | 18.2 x 65.1 mm |
Weight | 43.4 g |
Capacity définitionfermer
The nominal capacity originates from the manufacturer’s data sheet, if available. When the data sheet is unavailable, the nominal capacity is estimated. Batemo measured the C/10 capacity by discharging the cell at an ambient temperature of 25°C from 100% with a constant current of 0.28A (0.1C) until reaching the voltage of 2.5V. The thermal boundary condition is free convection. |
nominal 2.85 Ah C/10 2.74 Ah |
Current définitionfermer
All quantities are measurement results from the Batemo battery laboratory. The continuous current is the highest current that completely discharges the cell without overheating it. Therefore, the cell is discharged from 100% state of charge (SOC) at an ambient temperature of 25°C with a constant current until a residual state of charge of 10% and either the lower voltage limit of 2.5V or 90% of the maximum surface temperature (63°C) is reached. The peak current is the current that the cell can supply for 5 minutes. The cell is therefore discharged from 100% SOC at an ambient temperature of 25°C with a constant current until it reaches either the lower voltage limit of 2.5V or the maximum surface temperature of 70°C after 5 minutes. For cells that reach the maximum surface temperature, the measured current is taken directly as the peak current. For cells that do not reach the maximum surface temperature after 5 minutes because they reach the lower voltage limit first, the measured current is multiplied by a correction factor that estimates the current that would have heated the cell to the maximum surface temperature within 5 minutes. The thermal boundary condition is free convection. These operating conditions may be outside the cell manufacturer’s specification. |
continuous 8.05 A peak 14.8 A |
Energy définitionfermer
Batemo measured the C/10 energy by discharging the cell at an ambient temperature of 25°C from 100% with a constant current of 0.28A (0.1C) until reaching the voltage of 2.5V. The thermal boundary condition is free convection. |
C/10 10.2 Wh |
Power définitionfermer
All quantities are measurement results from the Batemo battery laboratory. The continuous power is the highest power that completely discharges the cell without overheating it. Therefore, the cell is discharged from 100% state of charge (SOC) at an ambient temperature of 25°C with a constant current until a residual state of charge of 10% and either the lower voltage limit of 2.5V or 90% of the maximum surface temperature ( 63°C) is reached. The peak power is the power the cell can supply for 5 minutes. The cell is therefore discharged from 100% SOC at an ambient temperature of 25°C with a constant current until it reaches either the lower voltage limit of 2.5V or the maximum surface temperature of 70°C after 5 minutes. For cells that reach the maximum temperature limit, the measured power is directly taken as peak power. For cells that do not reach the maximum surface temperature after 5 minutes because they reach the lower voltage limit first, the measured power is multiplied by a correction factor that estimates the power that would have heated the cell to the maximum surface temperature within 5 minutes. The thermal boundary condition is free convection. These operating conditions may be outside the cell manufacturer’s specification. |
continuous 26.2 W peak 51.3 W |
Energy Density définitionfermer
The energy densities result from the C/10 energy, the cell weight and the cell volume. |
gravimetric 235 Wh/kg volumetric 603 Wh/l |
Power Density définitionfermer
The power densities result from the peak power, the cell weight and the cell volume. |
gravimetric 1.18 kW/kg volumetric 3.04 kW/l |
LG Chem INR18650-M29 Model
Le Batemo Cell Model de la cellule de batterie LG Chem INR18650-M29 est un modèle de cellule physique de haute précision avec une validité globale. En tant que jumeau numérique, il s’intègre parfaitement dans vos recherches, développements et analyses de batterie en basant vos décisions sur des simulations. Consultez les détails pour en savoir plus sur les fonctionnalités et capacités du Batemo Cell Model.
Version du Batemo Cell Model | 1.304 |
Date de sortie | 01.05.2021 |
Batemo démontre la précision et la validité du Batemo Cell Model en comparant les données de simulation de la batterie et les données de mesure dans la plage indiquée ci-dessous. La validation est étendue, la caractérisation expérimentale couvre toute la zone opérationnelle de la cellule : À basse et haute température, jusqu’au courant maximal et dans toute la plage de l’état de charge.
Plage d’état de charge | 0 … 100% |
Plage de courant définitionfermer La plage de courant représente les limites de courant électrique utilisées dans le laboratoire de batterie Batemo. Veuillez consulter la fiche technique LG Chem INR18650-M29 pour une définition précise de la zone de fonctionnement sûre de la cellule. |
-16 A décharge … 4 A charge (-5,0C … 2,0C) |
Plage de tension définitionfermer La plage de tension représente les limites de tension électrique utilisées dans le laboratoire de batterie Batemo. Veuillez consulter la fiche technique LG Chem INR18650-M29 pour une définition précise de la zone de fonctionnement sans danger pour la tension de la cellule. |
2,5 … 4,2 V |
Plage de température définitionfermer La plage de température représente les limites thermiques utilisées dans le laboratoire de batterie Batemo. Veuillez consulter la fiche technique LG Chem INR18650-M29 pour une définition précise de la zone de fonctionnement de la cellule sans risque pour la température. |
-20 … 70 °C |
En outre, la validation du Batemo Cell Model est totalement transparente. La Batemo Cell Data contient les données de mesure brute et de simulation. Pour toutes les expériences, les précisions de tension, de température, de puissance et d’énergie sont calculées. Cela permet une évaluation et une analyse simples de la validité du Batemo Cell Model. Les graphiques montrent une sélection de données caractéristiques de la cellule LG Chem INR18650-M29 pour évaluer la performance de la cellule. La prédiction du Batemo Cell Model est intégrée dans les tracés dès que le Batemo Cell Model est terminé.
- Comportement de décharge : Le comportement électrique et thermique de décharge est fortement non linéaire.
- Comportement du pouls : La forme des différentes impulsions de courant change fortement.
- Comportement énergétique : Le graphique montre combien d’énergie la cellule peut fournir lorsqu’elle est utilisée à différentes puissances.
- Comportement de puissance : Plus la cellule fournit de puissance, moins elle peut la fournir longtemps.
- Comportement thermique : Plus les pertes thermiques sont importantes, plus la cellule chauffe, ce qui entraîne une puissance déchargée plus élevée.
montrer les définitions des expériencesfermer
La cellule est déchargée de 100% SOC avec différents courants constants à différentes températures ambiantes. La condition limite thermique est la convection libre. La mesure s’arrête lorsqu’on atteint soit la tension de 2,5V, soit la température de surface de 70°C.
La cellule est déchargée de 100% SOC avec des impulsions de courant suivies de phases sans charge à différentes températures ambiantes. La condition limite thermique est la convection libre. La mesure s’arrête lorsqu’on atteint soit la tension de 2,5V, soit la température de surface de 70°C. Le graphique montre une vue agrandie de la mesure pour visualiser une des impulsions.
La cellule est déchargée de 100% SOC avec différents courants constants à 25°C. La condition limite thermique est la convection libre. La mesure s’arrête lorsqu’on atteint soit la tension de 2,5V, soit la température de surface de 70°C. Le graphique montre l’énergie échangée dérivée et la puissance moyenne de l’expérience.
La cellule est déchargée de 100% SOC avec différents courants constants à 25°C. La condition limite thermique est la convection libre. La mesure s’arrête lorsqu’on atteint soit la tension de 2,5V, soit la température de surface de 70°C. Le graphique montre la durée de l’expérience et la puissance moyenne de l’expérience.
La cellule est déchargée de 100% SOC avec différents courants constants à 25°C. La condition limite thermique est la convection libre. La mesure s’arrête lorsqu’on atteint soit la tension de 2,5V, soit la température de surface de 70°C. Le graphique montre la température de surface de la cellule à la fin et la puissance moyenne dérivée de l’expérience.
Les précisions moyennes donnent un aperçu de la précision du Batemo Cell Model. Par conséquent, la racine carrée moyenne de la différence entre le résultat de la mesure et de la simulation est dérivée pour la tension, la température, l’énergie et la puissance. Les nombres relatifs rapportent la précision à la valeur absolue respective.
Précision moyenne de la tension | 0,025 V | 0,8 % |
Précision moyenne de la température | 0,8 K | 0,9 % |
Précision moyenne de la puissance | 0,08 W | 0,7 % |
Précision moyenne de l’énergie | 0,090 Wh | 1,3 % |
Le Batemo Cell Model décrit avec précision tous les aspects de la cellule. C’est l’outil parfait pour le développement de systèmes de batterie.
LG Chem INR18650-M29 Data
Batemo propose une caractérisation expérimentale approfondie de la cellule de batterie LG Chem INR18650-M29. Les données contiennent les résultats des mesures effectuées dans toute la zone opérationnelle de la cellule. Les descriptions et les graphiques ci-dessous expliquent et illustrent les mesures disponibles. Le Batemo Cell Viewer permet une analyse, une évaluation et une comparaison faciles et rapides des données. Consultez les détails pour en savoir plus.
Courants constants
La cellule est déchargée à partir de 100 % SOC ou chargée à partir de 0 % SOC avec différents courants, sous différentes températures ambiantes. La condition limite thermique est la convection libre. La mesure s’arrête lorsqu’on atteint soit une tension de 2,5V ou 4,2V, soit une température de surface de 70°C. Le graphique montre pour quelles températures ambiantes et quels courants constants de charge et de décharge des mesures sont disponibles.
Courants pulsés
La cellule est déchargée à partir de 100 % SOC ou chargée à partir de 0 % SOC avec des impulsions de courant suivies de phases sans charge, sous différentes températures ambiantes. La condition limite thermique est la convection libre. La mesure s’arrête lorsqu’on atteint soit une tension de 2,5V ou 4,2V, soit une température de surface de 70°C. Le graphique montre pour quelles températures ambiantes et quels courants d’impulsion des mesures sont disponibles.
Profils de puissance
Température ambiante |
Profils disponibles |
---|---|
-20 °C | |
0 °C | |
25 °C | |
40 °C |
La cellule délivre un profil de puissance typique à partir de 100 % SOC, sous différentes températures ambiantes. La condition limite thermique est la convection libre. La mesure s’arrête lorsqu’on atteint soit une tension de 2,5V, soit une température de surface de 70°C. Le tableau résume les températures ambiantes pour lesquelles le profil est disponible.
LG Chem INR18650-M29 Report
Batemo propose un rapport détaillé sur la cellule de batterie LG Chem INR18650-M29. Le rapport couvre tous les aspects importants de la cellule, vous aidant à mieux l’évaluer et la comparer. Ces informations constituent une base solide pour vos décisions concernant la conception de votre système de batterie. Consultez les détails pour en savoir plus.
Vue d’ensemble des performances | |
Extérieur de la cellule | |
Intérieur de la cellule | |
Caractéristiques de sécurité | |
Microstructure et matériau des électrodes |